elfatek

Construction Machinery and Mobile Hydraulic Machines

PROMOTIONAL FILM

Seventeen years ago, inspired by an ancient civilization, we embarked on this exciting journey. We are proud to present to you the technological advancements we have achieved at Elfatek. In our 17-year story, condensed into a 4-minute promotional video, we invite you to a world full of mesmerizing innovations, all delivered in a documentary-like experience.

ABOUT US

Founded in 2006 and quickly becoming a leader in its industry, Elfatek Electronics is a research and development organization that exports its products worldwide, starting from Turkey with domestic production and capital. Elfatek entered this sector by producing crane remote controls and succeeded in creating Turkey's first 80-channel remote control with over 240 hours of continuous operation.

As of October 27, 2017, Elfatek was registered by the Ministry of Science, Industry, and Technology as the 1st R&D center in the industrial electrical sector in Konya and the 41st in Turkey overall.

Elfatek continues to evolve with its experienced and dynamic team, combining technological investments with original designs to produce high-performance and high-quality products that meet the needs of the industry.

Elfatek Electronics, which does not compromise on customer satisfaction during and after the sales process, approaches the needs for spare parts, repairs, etc., with great dedication and also offers customers detailed training on the products.

With the mission of "Developing high value-added, R&D-based industrial products to increase Turkey's competitive power," Elfatek Electronics continues to be the leading and preferred company in its sector without compromising its vision of "Developing industrial products at an international level and being a leader in R&D."

08-11 KUGU SERIES

22-23 TURNA SERIES

12-15 ENQ SERIES

24-25 ANKA SERIES

elfatek

16-19 EN SERIES

26-27 ROPE ANGLE LIMIT SENSOR

20-21 EKO SERIES

28-29 SINGLE INPUT OVERLOAD INDICATOR

30-31 DUAL LOAD CELL OVERLOAD INDICATOR

38-39 WIRELESS HANDWHEEL

42-45 LIGHT SIREN & LED SIGNAL TOWER

32-33 LOADCELL

40-41 PEDAL TYPE REMOTE CONTROL

34-35 REMOTE DISPLAY

46-47 INCLINOMETER

48-49 Elfaladder

KUGU SERIES

Machine Technologies Automation Systems

Fater

Industrial

Machines

elfately

Overhead

Cranes

Crane Systems

The Swan series wireless controller provides remote machine control and is suitable for crane-like machines, especially in the crane industry. It allows for six different movements with single or dual speed options. It is used in applications that require user management, thanks to RFID-based authorization. It can be integrated with authorization update and user tracking systems via CANBus.

GENERAL FEATURES

- 2.4GHz LORA-GFSK RF Module
- 100 Channels, 32-bit Code Definition
- 8 Buttons, Dual-Contact Emergency Stop
- 0.96 Inch Color TFT Display
- Drop Detection and System Shutdown
- RFID Reader (125KHz-13.56MHz optional)
- Audible Alert with Buzzer
- Communication Ports (optional): CAN2.0A/B (CAN0pen), RS485, Ethernet, USB2.0
- Device Log System with SDCard (Optional)

COLOR SCREEN

Its ergonomic design makes it comfortable and easy to use.

START BUTTON

The start button is easily accessible.

EMERGENCY STOP BUTTON

The emergency stop button is designed to be protected against impacts.

QUICK-RELEASE COVER/BATTERY

Due to its special design, it has a quick-release battery cover. It operates with 2 AA-sized alkaline batteries.

OPERATOR AUTHORIZATION CARDI

It allows only authorized personnel to use it.

MODE BUTTON

It changes the operating frequency modes (channel and code) of the controller. The mode button can be programmatically customized for specific applications.

ELECTRICAL FEATURES

RECEIVER	85-265 VAC Operating Voltage
TRANSMITTER	2 Adet AA batteries

MECHANICAL FEATURES

RECEIVER	H:246, W:130, P:61 (mm)
TRANSMITTER	H:202, W:78, P:39 (mm)

1	RFID Card reader indicator (Red = Disabled, Green = Active, Blue = Failed to Initialize)
2	GYRO indicators (Red = Passive, Green = Active, Blue = Failed to Start)
3	Communication quality between receiver and controller
4	Battery indicator and charge level
5	EMERGENCY STOP status (Green: Emergency Stop Not Pressed, Red: Emergency Stop Pressed)
6	Status of the buttons (Blue: 1st Level, Red: 2nd Level, Yellow: Not Pressed)
7	Personnel authorization status and working status Authorized person The user defined to use the crane is within the working time frame. Unauthorized person Unidentified user not authorized to use the Crane Unauthorized time The user defined to use the crane is not within the working time frame
8	Current date information in Day / Month / Year format. In order for the authorization system to be active, the date and day information must be up-to-date and visible on the screen.
9	If the gyro is active, when a fall is detected, STOPED! message is displayed. To cancel this feature, the Gyro must be disabled from the menu.
10	When the operator card is read, the ID value is displayed.
11	Current time information in Hour:Minute:Second format. In order for the authorization system to be active, the time information must be up-to-date and visible on the screen.

EN-Q SERIES

Machine Technologies Automation Systems

Industrial Machines Overhead Cranes Crane Systems

The En-Q series wireless controller provides remote machine control and is suitable for crane-like machines, especially in the crane industry. It allows for six different movements with single or dual speed options. When used inside a metal panel, the antenna should be extended outside the panel using an extension cable.

AUX BUTTON

It is used for permanent output. (Horn and Light)

The side start button is easily accessible.

EMERGENCY STOP BUTTON

The emergency stop button is designed to be protected against impacts.

QUICK-RELEASE COVER/BATTERY

Due to its special design, it has a quick-release battery cover. It operates with 2 AA-sized alkaline batteries.

MODE BUTTON

It changes the operating frequency modes (channel and code) of the controller. The mode button can be customized for specific applications.

I-CHIP

It stores the operating frequency (channel and code) information of the controller.

I-Chip

The I-Chip stores the controller's operating frequency, channel, and code information. For example, if either your backup receiver or transmitter fails, you can transfer the I-Chip from the faulty unit to the functional backup unit, carrying over the channel and code information. This allows you to quickly get your equipment back up and running, minimizing downtime and enabling you to continue working without interruption.

HOW DO YOU PREFER ?

A rechargeable Li-ion battery offers long-lasting use. You can charge it with a special charger or via a USB cable, allowing you to recharge it anytime, anywhere.

BATTERY

POWER UNIT

The MID, X, ESX, and MAX designs have been specially crafted by Elfatek Electronics to ensure ease of use. These models are particularly suited for construction cranes, overhead cranes, and specialized applications. They are widely used in various industries, including rolling mills, iron and steel, and marble sectors. The controller body is resistant to impacts and collisions. The buttons on the controller are either single or dual-stage and are suitable for use with gloves.

AUX BUTTON

It is used for permanent output. (Horn or Light)

The side start button is easily accessible.

*In the En series models, the start and horn functions are on the same button. EMERGENCY STOP BUTTON

The emergency stop button is designed to be protected against impacts. QUICK-RELEASE COVER/BATTERY

The quick-release battery cover features a double screw design and special construction. It operates with 2 AA-sized alkaline batteries. **SAFETY** KEY

It allows only authorized personnel to use it. (Not RFID-based.)

I-CHIP

It carries the operating frequency (channel and code) information of the controller.

#remotecontrol

The EN series includes controllers with 2, 4, 6, 8, 10, and 12 buttons. The ENQ model has 8 buttons, of which 6 are used for control functions. There are five different models: EN-MID, EN-X, EN-ESX, and EN-MAX. It has a battery life of over 240 hours.

DIFFERENCES BETWEENMODELS Modeller Arası Farklar					
MODEL	MID	ESX	х	МАХ	ENQ
Double EMG stop relays	NO	YES	N0	YES	YES
	YOK	VAR	Y0K	VAR	VAR
Start/Korna butonu	YES	YES	YES	YES	NO
	VAR	VAR	VAR	VAR	YOK
Continuous Communication	N0	YES	N0	YES	N0
Between Receiver and Transmitter	Y0K	VAR	Y0K	VAR	Y0K
Run relay	YES	YES	YES	YES	YES
	VAR	VAR	VAR	VAR	VAR
Power key	YES	YES	YES	YES	N0
	VAR	VAR	VAR	VAR	Y0K
I-Chip	YES	YES	YES	YES	YES
	VAR	VAR	VAR	VAR	VAR
Separate relay for second speeds of all movements	N0	N0	YES	N0	N0
	Y0K	Y0K	VAR	Y0K	Y0K
3 Microprocessor	NO	NO	NO	YES	NO
	YOK	YOK	YOK	VAR	YOK
15-35 VAC/15-50 VDC	OPTIONAL	OPTIONAL	OPTIONAL	OPTIONAL	OPTIONAL
SUPPLY VOLTAGE	OPSİYONEL	OPSİYONEL	OPSİYONEL	OPSİYONEL	OPSİYONEL

Transmitter Unit				
Model	ESX	MID	MAX	Х
Number of Button	6,8,10,12	2,4,6,8,10,12	2,4,6,8,10,12	6,8,10
Maximum Power		36 m	W	
Supply Voltage		3 VE)C	
Frequency		2.4 G	Hz	
Number of Channel		80		
Operating Distance		100 n	n	
Emission Power of the RF System	10	mW ERP (Ir	nternal ante	enna)
Operating and Storage Temperature		-40 °C ~	+85 °C	
Enclosure Protection Rating		IP 65	[2]	
Material		Polyan	nide	
Button Diameter		20 m	im	
Battery	2	XAA Alkalir	e Batteries	
Continuous Operation		≥240	hours	
Advised Time Battery Low Signal		30 mi	nutes	
2 Buttons (Internal Battery)		310 (GR	
4 Buttons (Internal Battery)		310 (GR	
6 Buttons (Internal Battery)		345 (GR	
8 Buttons (Internal Battery)		360 (GR	
10 Buttons (Internal Battery)		385 (GR	
12 Buttons (Internal Battery)		440 (GR	

Receiver Unit				
Model	ESX	MID	MAX	Х
Maximum Power	10 W	8,8 W	10 W	8,8 W
Supply Voltage	(2	48-110- (15-35 VAC) (1380 VAC/ (1	220 VAC / 15-50 VD 80 - 230 VA	C)(3) AC)(5)
Frequency		2.4 0	θHz	
Number of Channel		8	0	
Operating Distance	100 m			
Delay Time on Start Relay	≤ 4	40 ms	≤65	i ms
Delay Time on Command Relay	≤ 4	40 ms	≤65	i ms
Delay Time on Passive Emergency (EMG Passive)	≤ /	40 ms	≤70) ms
Operating and Storage Temperature	e -40 °C ~ +85 °C			
Enclosure Protection Rating		IP 6	5 (2)	
Material	Polyamide			
Output Relay Contact Capacity	10A 250 VAC			
Stop Relay Contact Capacity		8A 250	O VAC	
Weight / Size (box included)		Varies b	y model	

- 1. The values are applicable for the 6-button, dual-speed crane remote control set with a 220 VAC power supply. They may vary depending on the number of buttons.
- 2. IP (Ingress Protection) rating measures resistance to water and dust.
- 3. For the EN ESX, MID, and X model remote controls, this is an optional power supply voltage. It is standard for the MAX model.
- The power supply voltage is optional for the controllers.
 For the EN MID model, it is the power supply voltage for 2 and 4-button controllers.

EN EKO SERIES

Machine Technologies Automation Systems

즈

Crane Systems

Industrial Machines

Overhead Cranes

Ci Sys

The EN EKO SERIES is meticulously designed to enhance operational efficiency, offering cost savings over the long term due to its economical performance and durable construction. It is also priced to accommodate business budgets. The controller body is resistant to impacts and collisions, adding to the product's value. Additionally, it provides comprehensive and ideal solutions for businesses by offering fast and effective technical support.

GENERAL FEATURES

Supply Voltage	3 VDC
Button Number	2-4-6-8-10-12
Operating Distance	100 m
Operating and Storage Temperature	-40 ile +85 °C
Number of Channel	80
Enclosure Protection Rating	IP 65

START BUTTON

The side start button is easily accessible.

EMERGENCY STOP BUTTON

The emergency stop button is designed to be protected against impacts.

QUICK-RELEASE COVER/BATTERY

The quick-release battery cover features a double screw design and special construction. It operates with 2 AA-sized alkaline batteries.

TURNA SERIES

3 BUTON

Automation Systems

Elevator and Crane Systems

Logistics **Applications**

Machine Technologies

Conveyor **Applications**

RF (Radio Frequency) remote control devices are designed for use with equipment that requires remote operation. They are suitable for industrial machines, automatic doors, and tow trucks. Custom label designs can be created according to the project requirements.

GENERAL FEATURES

Supply Voltage	48~265 VAC / 9~48 VDC (Opsiyonel)
Button Number	10-8-6-4-3
Material	Polyamide
Operation and Storage temperature	-40 to +85 °C
Number of Channel	127
Operating Distance	100 m

COMPACT DESIGN

The Turna series remote controls have a compact design, making them small in size.

EASİLY PORTABLE

Thanks to the strap attachment on the back of the remote, it can be easily hung up or conveniently carried in a pocket due to its small size.

CUSTOM BUTTON DESIGNS

The remote can be customized for the user with 10, 8, 6, 4, or 3 buttons, and digital printing can be applied to these buttons according to customer specifications (Optional).

LED INDİCATOR

The function indicator LED on the remote can be used by the user for special applications.

CUSTOM SOLUTIONS

The Turna series remotes offer easy and quick solutions for your special projects with their programmable feature.

ANKA SERIES

Machine Technologies

Automation

Systems

Crane Systems

The Anka series joystick remote is designed for industrial applications. It features a joystick control for precise movement control and allows for remote operation of devices thanks to its wireless communication capability. The Anka series joystick remote can be used in various industrial applications, such as machinery, cranes, and lifting equipment. It is made from durable materials and has a user-friendly design.

GENERAL FEATURES

Supply Voltage	3 VDC
Maximum Power	96 mW
Emission Power of the RF System	10 mW ERP (Dahili Anten)
Material	Polyamide
Operating and Storage Temperature	-40 ile +85 °C
Number of Channel	80
Operating Distance	100 m
Frequency	2.4 GHz ISM Band

JOYSTICK CONTROL

The Anka series joystick remote features a precise joystick control for managing movements. This control allows the user to directly and accurately adjust parameters such as direction, speed, and position.

WIRELESS COMMUNICATION

The Anka series joystick remote has a wireless communication feature, enabling the user to control devices remotely and safely.

HIGH DURABILITY

The Anka series joystick remote is made from durable materials, providing protection against impacts and environmental conditions. This ensures the device's longevity and reliable performance over time.

MULTIFUNCTIONALITY

The Anka series joystick remote can be used in various industrial applications. For example, it is suitable for use in machinery, cranes, lifting equipment, and many other applications.

USER-FRIENDLY DESIGN

The Anka series joystick remote features a user-friendly design. This design is specifically developed to ensure that users can operate it easily and with minimal fatigue.

ROPE ANGLE LIMIT SENSOR

00

Fate

Ceiling Crane Crane Systems

The rope angle limit sensor is designed to enhance crane and operational safety by preventing the crane from lifting loads if the rope exceeds adjustable limit values on two axes. It features one relay output.

GENERAL FEATURES

- 2-axis angle measurement
- 2-axis digital angle display
- 1 relay output
- Digital control panel
- Angle limit control with adjustable angle values
- Can be mounted on the rope with a load cell due to its ergonomic design

• Offset button to set any angle value as the starting point

Supply Voltage	48~265 VAC veya 24~36 VDC (opsiyonel)
Maximum Power	1.5W (24 VDC besleme) / 2W (265 VAC besleme)
Communication	RS232 veya CANBus (opsiyonel)
Material	ABS
Operating Temperature	-40°C ile +85°C
Storage Temperature	-40°C ile +85°C
Enclosure Protection Rating	IP65
Weight	360 gr
Warranty	2 years

PATENTED PRODUCT

Our product is patented to maintain our growing quality.

AXIS USAGE

It measures the angle limit values on both the X and Y axes.

USAGE ADVANTAGE

It prevents damage to the crane's drum and rope guide sections and helps to avoid workplace accidents.

PROVIDES PROTECTION

When the angle deviates or exceeds the set limit, it halts the movement and prevents the device from lifting the load.

SINGLE INPUT OVERLOAD INDICATOR

Control

Automation Systems

Mobile Crane

The overload control indicator integrates with LoadCell products and provides easy connection to industrial control devices. It is a robust and high-quality control unit designed for cranes with 4 relay outputs. The indicator is used to prevent lifting operations from continuing if the load exceeds the crane's capacity, providing an alert in hook cranes when the load is too high.

GENEL ÖZELLİKLER

- 6-digit 7-segment LED display screen
- 6 user buttons
- 6 LED status indicators
- 1 load cell connection
- 4 adjustable NO/NC contact 10A relays
- 1 adjustable analog output
- RS232 communication line (Optional)
- CANBus communication line (Optional)

USAGE
ADVANTAG

The overload indicator prevents lifting loads that exceed the crane's capacity, thereby reducing the risk of workplace accidents and material damage. It also extends the crane's operational lifespan.

COMMUNICATION FEATURES

It supports connectivity to external systems via RS232 (optional) or CANBus (optional) communication lines and features an analog output.

CALIBRATION FEATURE

Calibration can be performed in two different ways according to the load cell parameters and using a load with a known weight.

EXTERNAL DISPLAY

It can be connected to an external digital display to monitor the process from long distances.

Supply Voltage	48~265 VAC / 24~36 VDC (Opsiyonel)
Sensor Input	1 load cell input
Signal	4 relays (RL1, RL2, RL3, RL4) - 1 analog output
Relay Positions	All relay positions are adjustable. RL 1-2 common, RL 3-4 common
Operating Temperature	-40°C to +85°C
Load Control Unit Weight	218 gr
Communication Features	RS232 communication line (Optional) CANBus communication line (Optional)

#overload indicator

DUAL **LOADCELL** INDICATOR

Automation Systems Crane Overload Control

Mobile Crane

The dual load cell overload control indicator integrates with LoadCell products and provides easy connectivity to industrial control devices. It is a robust and high-quality control unit designed for cranes with 8 relay outputs. Specifically designed for dual trolley/dual hook cranes, it can measure the weight of each load attached to each hook separately, as well as the total weight.

GENERAL FEATURES

- 6-digit 7-segment LED display screen
- 6 user buttons
- 6 LED status indicators
- 8 LED indicators for relay status
- 2 load cell connections
- 8 adjustable NO/NC contact 10A relays
- 4 digital inputs (12V)
- 2 adjustable analog outputs

Supply Voltage	48~265 VAC / 24~36 VDC
Sensor Input	2 load cell inputs
Signal	8 relays, 2 analog outputs, 4 digital inputs
Relay Positions	All relay positions are adjustable. RL 1-2 common, RL 3-4 common, RL 5-6 com- mon, RL 7-8 common
Operating Temperature	-40°C to +85°C
Load Control Unit Weight	400 gr.
Communication Features	RS232 communication line CANBus communication line

ADVANTAGES OF USE

For products with CANBus support, data transfer and parameter adjustments can be performed via PLC and computer using the CA-Nopen protocol.

COMMUNICATION FEATURE

Unlike the single load cell indicator, it includes both RS232 and CANBus communication options as standard features, rather than being optional.

#dualloadcellindicator

CALIBRATION FEATURE

Calibration can be performed in two different ways: according to the load cell parameters or using a load with a known weight.

WEIGHT FEATURE

The system provides separate displays for the weight of each hook and a total weight display. It features 8 relays and 2 load cell connections.

LOADCELL **ROPE TYPE** & PIN TYPE

elFatek

Automation Systems

Crane Overload Control

Mobile Crane

elfatek

The load cells are made from specially alloyed steel and are designed for use in crane overload systems, suitable for all types of wire rope cranes. When used in conjunction with the overload control indicator, they create a safe working environment for your crane.

#loadcell

DISPLAY

Automation Systems Crane Overload Control Industrial Weighing Applications

External digital display devices, due to their large size, are used as panel meters to monitor processes from a distance. They are easily visible from up to 50 meters in indoor environments. The use and installation of external digital displays are extremely simple.

GENERAL FEATURES

Supply Voltage	85~265 VAC / 24~36 VDC
Body Construction	Dayanıklı alüminyum + ABS gövde
Display	2 adet LED durum gös- tergesi
Power Consumption	6W
Operating and Storage Temperature	-40 °C ile 85 °C
Communication Features	RS232 communication line CANBus communication line 0-10V analog input 4-20mA analog input
Device Dimensions	20mm x 670mm x 150mm (Width x Length x Height)

PURPOSE OF USE

The external digital display is an industrial device that shows the weight of the load attached to the crane's hook.

RELAY CONTROLS

The load indicator measures the weight value and transmits it through RS232/CANBus and analog communication channels to large display screens, allowing the user to have detailed information about the weight value.

REMOTE-CONTROLLED EXTERNAL DIGITAL DISPLAY & LOAD CONTROL INDICATOR

alFate

Automation Systems Crane Overload Control

The display device and load indicator are used to prevent lifting operations from continuing if the load exceeds the crane's capacity by providing an alert. This helps prevent potential workplace accidents and material damage. Additionally, external system connections can be made via communication lines. The integration of the display panel and load indicator allows for easy installation. Since the system can be controlled via a remote control, device access for parameter adjustments is not necessary. Device parameters can be changed via CANOpen.

GENERAL FEATURES

Supply Voltage	-85~265V AC operating voltage (Optional) -48~110V AC operating voltage (Optional) -24~36V DC operating voltage (Optional)
Body Construction	Durable aluminum + ABS body
Display	6-digit 7-segment LED display panel
Power Consumption	100 - 350 mA (No Load/Full Load)
Operating and Storage Temperature	-40 °C ile 85 °C
Communication Features	RS232 communication line CANBus communication line
Relay Feature	3 adjustable NO contact 7A relays
Parameter Adjustment	Remote control

MODE OF USE

Since the device can be controlled via remote control, access to the device for parameter adjustments is not necessary.

PRODUCT ADVANTAGE

The load indicator and external digital display are combined into a single product. It incorporates the features of both products.

OCCUPATIONAL SAFETY

The overload indicator prevents lifting loads that exceed the capacity, thereby reducing the risk of workplace accidents and material damage. It also extends the lifespan of the crane.

COMMUNICATION

External system connections can be made via RS232 (optional) or CANBus (optional) communication lines, as well as through the analog output feature.

#remotedisplay

HANDWHEEL

Machine Technologies Automation Systems CNC Machines

The wireless handwheel is designed to replace wired handwheels by connecting to the Manual Pulse Generator (MPG) unit on CNC machines. It offers the same functionality as wired handwheels used for CNC machines.

GENERAL FEATURES

- Operating Frequency: 2.4 GHz Bluetooth
- Number of Buttons: 4
- •Operating Range: 100 meters
- Receiver Initial Ready Delay: < 2 seconds
- Response Time to Commands (Button Press): < 20 ms
- Operating and Storage Temperature: -40°C to +85°C
- Body Material: Polyamide
- Continuous Operating Time with Full Charge at 20°C: 40 hours
- Continuous Operating Time After Low Battery Warning: 2 hours

		Supply Voltage	Verici: 3 VDC Alıcı: 12~24 VDC
MODE OF USE	OCCUPATIONAL SAFETY	Operating Frequency	2.4 GHz Bluetooth
Since the product is wireless, it provides easier handling for	Due to its wireless nature, it significant- ly reduces the risk of	Operating Range	100 m
precise adjustments by hand.	workplace accidents.	Current Consumption	60 mA
PRODUCT Advantage	COMMUNICATION FEATURE	Operating and Storage Temperature	-40°C ile +85°C (Alıcı)
In large CNC machines, the wireless handwhe- el helps prevent errors	It provides communica- tion capability via Blu- etooth for distances un	Continuous Operating Time with Full Battery	40 hours
and time loss by being close to the device du- ring axis adjustments.	to 100 meters.	Device Mechanical Di- mensions	75 mm x 75 mm x 197 mm (W x D x H) (Verici)

#cnchandwheel

It supports usage for

up to 6 axes.

PEDALTYPE REMOTE CONTROL

Automation Systems

Sheet Metal Processing Machines Sewing Machines

Plate Rolling Machines

Hydraulic Press Machine

8

Spot Welding Machine

Pedal-type remote control systems are designed for the operation of various machines.

OCCUPATIONAL SAFETY

The pedal-type remote control system is designed with top-level safety and precision.

PRODUCT ADVANTAGE

The pedal-type remote control features a replaceable frequency chip (IChip) that can be removed and inserted into another pedal-type transmitter or receiver in case of any malfunction. This ensures that operational disruptions are avoided and continuity of work is maintained.

GENERAL FEATURES

Supply Voltage	3 VDC
Operating Frequency	2.4 GHz I.S.M Band
Operating Range	100 m
Current Draw	60 mA
Operating and Storage Temperature	-40 °C ile 85 °C
Continuous Operating Time with Full Charge	≥ 200 saat
RF System Output Power	10 mW ERP (Internal Antenna)

CUSTOM APPLICATION

Custom applications can be made according to the configuration of the machine it is applied to.

COMMUNICATION

Radio Frequency provides wireless control from a secure distance. All models of the remote controls feature a low battery warning LED and a signal LED.

#remotecontrolset

LIGHT WARNING SYSTEMS

SIRE

Machine Technologies

Automation Systems

Industrial

Cranes

SIREX

Ceiling

Crane

Mobile Crane

Illuminated warning systems used in factories are designed to ensure safety by alerting workers and other users, especially in hazardous or special situations. These systems can be utilized for fire alarms, emergency alarms, emergency stops, mass evacuations, and similar scenarios.

GENERAL FEATURES

Model	Dome			
Supply Voltage	Low Voltage Model: 2430 VDC / 1530 VAC High Voltage Model: 48~265 VAC			
Lens Unit Colors	Red, Orange, Green, Blue, Transparent			
Buzzer Sound Level	Quiet / Low Sound: 80 dB High Sound: 100 dB	MELODY	SOUND	LIGHT
Lens Unit / Main Body Material	Polycarbonate (ABS) / Polystyrene-Polypropylene (PS-PP)	16 Different Melodies	High / Low / Silent	Flasher / Kotating / Steady
Lens Diameter and Height	Φ72mm / h:70 mm			
Operating Temperature	-40 °C ~ +85°C			
Koruma Derecesi	IP54			

Machine Technologies

Automation Systems

Ceiling

Crane

Mobile Crane

Industrial Cranes

Light warning systems used in factories are designed to ensure safety by alerting workers and other users, especially during hazardous or special situations. These systems can be employed in scenarios such as fire alarms, emergency alarms, emergency stops, and mass evacuations.

GENERAL FEATURES

Model	Tower				
Supply Voltage	(24~50 VDC / 24~35 VAC) / 85~265 VAC (Optional)				
Lens Unit Colors	Red, Orange, Green, Blue, Transparent, Yellow				
Buzzer Sound Level	Steady: 70-95 dB		STEADT LED LIGHT	FLASHING LIGHT	
Lens Unit / Main Body Material	Polycarbonate, Polyamide / ABS				
Lens Diameter and Height	Φ53mm / h:38 mm - Φ53 mm / h:58 mm				
Operating Temperature	-20 °C ~ 70°C				
		- I I			

INCLINOMETER

Construction Machinery and Vehicles

Agricultural and Forestry Machinery

Cranes and Lifting Systems

Industrial

Cranes

💿 CAN

elfatek

Mobile Crane

Crane

Designed to measure the tilt angles of the surface it is mounted on with maximum precision, thanks to MEMS technology, even under the most challenging conditions. This device can be used for both single-axis and dual-axis measurement applications.

GENERAL FEATURES

Model	Vatoz	
	1 AXIS	2 AXIS
Supply Voltage	9~36 VDC	9~36 VDC
Measuring Range	9~360 ºVDC	±85°
Angle Resolution	CANopen, SAE J1939 ±0.2°	CANopen, SAE J1939 ±0.4°
Filter	Mode 1	40 Hz
	Mode 2	70 Hz
	Mode 3	10 Hz
	Mode 4	10 Hz (Low Noise)
Enclosure Protecion Raing	-40 °C ~ 85°C	
Connection	M12-5 Pin, Male Connektor	
	M12-5 Pin, Female Connektor	

Control and Automation Systems

Ladder programming logic is a commonly used method for programming PLCs (Programmable Logic Controllers) in industrial automation systems. The term "Ladder" comes from the graphical symbols used in this programming language, which are arranged in a ladder-like structure. This layout resembles a ladder, with rungs representing the various logical operations and connections in the program.

#elfaladder

Control and Automation Systems

- 22

Q 🖲 C	Jar Derle Pencere Dil Haktomata		
-(END RES CMP MAP -4111(1)(1)-	
TEST_PROJESLost	×		
	C.\Users\Arge200.Desktop\LADDER D/AGRAM1\Projects\TEST.	PROJESI, TEST, PROJESI, enfi	
- Hain Program	Rung1 START		
SubRoutine	Rung2		SET MOD
B Bit Operation	STOP		RST MOD
H Compare H Convert	Rung3 MDD		EMG_LED
H Extended H Integer Mathematics	Bung4 Obj	je Seç	()
Final Point Mathematic Move		V Real V Real V	HORN_RELAY
it The	Rungs PR START		
	Rungé + UP 1		THE TIMENO TOPP 0 [500]
	UP_2		()
	Rung7 DOWN_1 DOWN_2	1	YD
	RIGHT_1 Rungt RIGHT_2		() Y8
	LEFT_1 LEFT_2		()
	LI SOUTH_1 SOUTH_2		710
	NORTH_1		
	A1		
	B1 D		
	+		
	Agitana	Taman Valuer	
¢			
Kolon : 1 - Satar : 11			
TATA TATA TATA	Antel State Contraction of the C		
	A LO IN MILE HIS CO. CO.		

9

ONLINE Catalog

www.**elfatek**.com.tr

#remotecontrol

#vinckumandalari